So, what is #LTE? To most, it is a faster network technology. To network operators around the world, it is a way to simplify their infrastructures to reduce costs while improving the quality of their service to subscribers. Advertisements by network operators declare it as the “most advanced” network technology. In the end, it is Long Term Evolution of the Universal Mobile Telecommunications System (UMTS).
But that doesn’t tell us what LTE actually is. LTE is what the 3GPP (3rd Generation Partnership Project, the group responsible for standardizing and improving UMTS) designates as their next step. UMTS is the group of standards that define 3G for GSM networks across the world, including AT&T and T-Mobile’s 3G networks. The cdmaOne/CDMA2000 family of standards are not maintained by 3GPP, but by a different organization spearheaded by Qualcomm. For subscribers to operators with networks utilizing CDMA2000 technology, LTE is the replacement of mediocre CDMA2000 networks with a superior cellular telecommunications system offering flexibility and power to the network operator and the subscriber.
LTE is a very good, easily deployable network technology, offering high speeds and low latencies over long distances. For example, two of the four operators’ LTE networks in New York City were rated well for achieving this goal. Verizon’s LTE service was rated with an average download speed of 31.1Mbps and an average upload speed of 17.1Mbps. T-Mobile’s LTE service was rated with an average download speed of 20.5Mbps and an average upload speed of 13.5Mbps.
Of course, that doesn’t mean all networks are created equal. Some aren’t quite able to achieve these goals. For example, Sprint’s LTE service was rated with an average download speed of 4.0Mbps and an average upload speed of 2.5Mbps. AT&T’s LTE service was much better than Sprint’s, but still bad with an average download speed of 7.6Mbps and an average upload speed of 2.4Mbps.
In this article, we will discuss what configurations LTE can be deployed in, why LTE is easily deployable, how LTE works as a radio technology, what types of LTE exist, how LTE affects battery life, what network operators want LTE to do, and the future of 4G as a whole. The most technical parts of the article are LTE can be deployed in, why LTE is easily deployable, how LTE works as a radio technology, and what types of LTE exist. For those who don’t want that information, you can skip to how LTE affects battery life and still get the gist of what we’re saying. But to get the complete picture, reading the whole article is advised.
How LTE works
LTE uses two different types of air interfaces (radio links), one for downlink (from tower to device), and one for uplink (from device to tower). By using different types of interfaces for the downlink and uplink, LTE utilizes the optimal way to do wireless connections both ways, which makes a better-optimized network and better battery life on LTE devices.
Source: https://www.extremetech.com/mobile/110711-what-is-lte